
File name: How_To_use_Generic_Header_Manipulation_21K.docx

 Page 1 of 60

Reference Guide

Generic Header Manipulation

&
Regular Expressions

For the Ingate SIParators® and Firewalls using software release 4.10.x or later.

This document assumes a basic understanding of regular expressions and their behaviour.

1/22/2024

Revision History:

Revision

Date Author Comments

… … … …

15 2020-01-20 PD Complete re-write. “variable
substitution” → “Header Access
Variables”. Reduction →
Normalization. CHM → CHO.

16 2020-04-26 PD Tagged new 6.3 features

18 2020-10-16 PD $(body.plain) and response (?!)
corrections, HAV corrections.

19 2020-11-02 PD Fix methods tag

20 2020-12-09 PD Added $(count… call count variables
plus minor fixes and adjustments

21 2021-11-12 PD Clarify indices usage

22 2022-05-12 PD Add ;b2buafwdref tag
23 2024-01-22 PD Clarify .userinfo with RFC4904 tags

How To Guide: Generic Header Manipulation & Regular Expressions Page 2 of 60

Table of Contents

Errata for Ingate <= 5.0.11 .. 5

1 Introduction .. 6
1.1 Example... 6
1.2 How? ... 6
1.3 Why GHM? .. 7
1.4 Where do I use GHM?... 7
1.5 What can I do with GHM? .. 7

2 Where to configure GHM ... 8
2.1 SIP Traffic – Dial Plan .. 9
2.2 Regexp match – Matching From Header .. 9
2.3 Regexp match – Matching R-URI .. 9
2.4 Regexp substitution and GHM – Forward To ... 9
2.5 SIP Traffic – Routing .. 10
2.6 SIP Trunk – Trunk 1-n .. 10
2.7 Incoming messages ... 11
2.8 Outgoing messages ... 12

3 Regular Expressions – matching your input .. 14
3.1 Introduction .. 14
3.2 Explanation ... 15
3.3 Standard regular-expression notation .. 15
3.4 Escape special characters ... 16
3.5 Routing calls using the Dial Plan and the SIP trunk Page ... 16
3.6 Example Regular Expressions in the Matching From Header ... 17
3.7 Regular Expressions in the Matching Request URI ... 17
3.8 Regular Expressions in the Forward To .. 20
3.9 Examples of Basic Regular Expressions .. 20
3.10 Additional information ... 21

4 Special Tags in the Ingate Firmware ... 22
4.1 Rewrite From header on egress ... 22
4.2 183 to 180 conversion .. 22
4.3 Do not REGISTER to trunk server(s) .. 22
4.4 Do not automatically monitor trunk server(s) with SIP OPTIONS .. 23
4.5 Force B2BUA on .. 23
4.6 B2BUA with media via the main dial plan .. 23
4.7 Explicitly state transport ... 23
4.8 Specifying Escape Characters (dial string) for e.g. Telia SIP trunk .. 24
4.9 Explicitly handle only specific METHODS.. 24
4.10 Force a specific response, e.g. 503, 5xx, 6xx .. 24
4.11 Support q-value in Trunk User Name ... 25
4.12 Support parallel forward in the dial-plan ... 26
4.13 Forward REFER through the B2BUA ... 26

5 Header Access Variables .. 28
5.1 Headers ... 28
5.2 Body Access Variable .. 29
5.3 The difference between $(x.user) and $([x.user]) .. 30
5.4 Port and Password .. 30
5.5 Indices, indexes, [?] .. 30

How To Guide: Generic Header Manipulation & Regular Expressions Page 3 of 60

5.6 Example equivalences of a From header (built using HAV).. 32
5.7 Examples ... 32

6 Call Count Variables .. 34
6.1 Call Counters ... 34
6.2 Call Count Logic ... 34

7 Conditionals .. 36
7.1 Conditional Regular Expressions (CRE) ... 36
7.2 Conditional Header Output (CHO) and Conditional Body Output (CBO) ... 41
7.3 Conditional Test (CT)... 42
7.4 Conditional Results (CR).. 45
7.5 Conditional Actions (CA) ... 46
7.6 Conditional Output (CO) ... 47
7.7 Conditional Header Output (CHO) examples ... 48
7.8 URI Parameter Chaining.. 51
7.9 Keyword / Grammar and Syntax Summary for CHO and CRE .. 52

8 Generic Header Manipulation (GHM) ... 53
8.1 GHM for Requests(?...&…) .. 54
8.2 GHM for Responses(?!...&!...)... 55
8.3 GHM for Requests (?...&…) and Responses(?!...&!) combined in one expression............................. 56
8.4 Multiple Occurrences of the same Header... 56
8.5 Header Access Variables ... 57

9 Supplementary examples from real-world support cases ... 59

How To Guide: Generic Header Manipulation & Regular Expressions Page 4 of 60

Terminology used in this document:

Text written in a Monospace Font generally signifies regular expression code i.e. GHM, CHO,

CRE, HAV or their in/output, i.e. SIP URIs.

Note: Samples in this document are not guaranteed to be protocol-accurate or compliant; they are

intended for demonstration only and are often reduced for simplicity.

Abbreviation Term
GHM Generic Header Manipulation

CRE Conditional Regular Expressions

CHO Conditional Header Output

CHM Conditional Header Manipulation
B2BUA Back to Back User Agent

ITSP Internet Telephony Service Provider

HAV Header Access Variables

How To Guide: Generic Header Manipulation & Regular Expressions Page 5 of 60

Errata for Ingate <= 5.0.11:

You’re using an old firmware – upgrade!

Note: In firmware versions <= 5.0.11 you cannot use $1?From=$(...$1...) – i.e. regexp

capture result groups (on the trunk page i.e. where $1 is before and after the “?”), and $REGMATCH

expressions which also contain their own $1 capture groups. The workaround is to use

$0?From=$(...$1...). The fix is to upgrade to >= 6.0.1.

Expressions such as the following will fail to evaluate:

sip:$1@192.168.1.1?From=%3Csip%3a$(REGMATCH_^001([0-9]{10})$_REGMOD

_+1$1_REGELSE_^1([0-9]{10})$_REGMOD_+1$1_REGELSE_([0-9]{10})$_REGMO

D_+1$1_REGEND.from.user)%40$(from.host)$([from.uriparams]) %3E$(fro

m.params)

A workaround is thus:

sip:$0?From=%3Csip%3a$(REGMATCH_^001([0-9]{10})$_REGMOD_+1$1_REGELS

E_^1([0-9]{10})$_REGMOD_+1$1_REGELSE_([0-9]{10})$_REGMOD_+1$1_REGEN

D.from.user)%40$(from.host)$([from.uriparams]) %3E$(from.params)

$0 evaluates to the whole user portion of the RURI on the trunk page.

Or not to use a capture group on the trunk page e.g.

Incoming Trunk Match Forward to
(.*) $1

While instead use:

Incoming Trunk Match Forward to
.* $0

If a fix is necessary e.g. you must forward trunk captures to a host which differs from the PBX

configured on the trunk page, write to support@ingate.com for a patch for your current firmware

version <= 5.0.11, or upgrade your firmware > 5.0.11

mailto:support@ingate.com

How To Guide: Generic Header Manipulation & Regular Expressions Page 6 of 60

1 Introduction

This document describes how to use Generic Header Manipulation (GHM) and Regular Expressions

(RegEx) in an Ingate SIParator/Firewall. With the GHM feature it is possible to Add, Change or

Remove any Header in SIP Requests and Responses.

1.1 Example

An ITSP requires the presence of a P-Asserted-Identity Header as part of authorization and

the IP-PBX does not provide it. As seen here (ingress):

INVITE sip:6135551212@209.216.177.59:5060 SIP/2.0

Via: SIP/2.0/UDP 209.249.3.100:5060;branch=z9hG4bK9624349

To: sip:6135551212@209.249.3.56:5060

From: <sip:5035551111@209.249.3.100>;tag=3462103187-665679

Supported: timer, 100rel

Call-ID: 2165939-3462103187-665672@NXT02.broadvox.net

CSeq: 1 INVITE

Allow: INVITE, BYE, OPTIONS, CANCEL, ACK, REGISTER, PRACK, UPDATE

Max-Forwards: 69

Session-Expires: 3600;refresher=uac

Contact: sip:5035551111@209.249.3.100:5060

Content-Type: application/sdp

Content-Length: 249

The Ingate adds the header to the SIP message upon forward (egress) to the ITSP:

INVITE sip:6135551212@209.216.177.59:5060 SIP/2.0

Via: SIP/2.0/UDP 209.249.3.100:5060;branch=z9hG4bK9624349

To: sip:6135551212@209.249.3.56:5060

From: <sip:5035551111@209.249.3.100>;tag=3462103187-665679

Supported: timer, 100rel

Call-ID: 2165939-3462103187-665672@NXT02.broadvox.net

CSeq: 1 INVITE

Allow: INVITE, BYE, OPTIONS, CANCEL, ACK, REGISTER, PRACK, UPDATE

Max-Forwards: 69

Session-Expires: 3600;refresher=uac

Contact: sip:5035551111@209.249.3.100:5060

P-Asserted-Identity:sip:5035551111@64.156.174.74

Content-Type: application/sdp

Content-Length: 249

Note: The above is also performed on the trunk page by filling in the Identity column with
5035551111@64.156.174.74.

1.2 How?

The following GHM expression can do the modification to make the above SIP request:

?P-Asserted-Identity=sip%3a$(from.user)%4064.156.174.74

Where ? signifies a GHM – read more about these in the section Generic Header Manipulation

(GHM). P-Asserted-Identity is the name of the header you wish to Manipulate – in this case,

How To Guide: Generic Header Manipulation & Regular Expressions Page 7 of 60

create, or add to your egress SIP. $(from.user) is a variable. Read more about these in the

section Header Access Variables.

1.3 Why GHM?

The purpose of GHM is to enhance the interoperability between different vendor equipment

scenarios, as IP-PBX, Service Providers, and SIP enabled device OEMs implement SIP standards

differently. GHM can normalize deviations.

With regular expressions, it is possible to match content from ingress SIP messages. When

forwarding SIP messages, they can be rewritten to your specification. Header Access Variables make

it possible to read information from a header at ingress in order to construct a new or replacement

header at egress.

1.4 Where do I use GHM?

Rules are configured in the Dial Plan and SIP Trunk Page GUIs. The rules are configured in the same

fields as regular expressions are written, i.e. telephone numbers, SIP from and to addresses. Read

more about this in the section Where to configure GHM.

1.5 What can I do with GHM?

The GHM feature makes it possible to Add, Re-write or Delete any SIP Header of incoming or

outgoing SIP messages, both Requests (Methods: INVITE, ACK, …) and Responses (180

Ringing, 200 OK, …). GHM does not yet allow for write manipulation of individual parts of the

ingress SIP header itself, but requires that a new header be created based on parts of SIP headers at

ingress, and from arbitrary strings.

The following list summarizes available GHM actions:

• Add a header to an egress message, where a header doesn’t exist at ingress

• Modify header content (by writing a new header)

• Replace an instance of a header

• Pass a header unchanged

• Delete a single or multiple instances of a header

• Delete multiple headers

Additionally, all listed actions can be done conditionally – i.e. check for a matching condition, and

then act if the condition is met. Header manipulation for requests are performed after routing of calls,

while responses are modified prior to routing.

How To Guide: Generic Header Manipulation & Regular Expressions Page 8 of 60

2 Where to configure GHM

Regexp matches of SIP are configured in the below listed locations within the Ingate

Firewall/SIParator, marked with blue, below.

Regular Expression match

SIP Traffic > Dial Plan

Matching From Header – Reg Expr

Matching Request-URI – Reg Expr

SIP Trunks > Trunk n page

Main Trunk Line – Incoming Trunk Match

PBX Lines – From PBX Number/User and

Incoming Trunk Match

SIP Lines – From SIP Number/User and

Incoming Trunk Match

Regexp substitution and GHM of SIP are configured in destination fields, i.e. the Forward To fields

in the below listed locations within the Ingate Firewall/SIParator, marked with red, below.

Regular Expression Substitution and GHM

SIP Traffic > Dial Plan

Forward To – Reg Expr

SIP Traffic > Routing

User Routing – Forward To

Static Registrations – Forward To

SIP Trunks > Trunk n page

Main Trunk Line – Username and Forward

PBX Lines – Username and Forward To PBX

Account

SIP Lines – Username and Forward To SIP

Account

How To Guide: Generic Header Manipulation & Regular Expressions Page 9 of 60

2.1 SIP Traffic – Dial Plan

2.2 Regexp match – Matching From Header

The Matching From Header matches source SIP URI, source Transport, and Network Address. In the

Regular Expression, your expression defines matches for the From Header SIP URI of SIP messages.

For a request to match, all criteria must be fulfilled.

2.3 Regexp match – Matching R-URI

The Matching Request URI matches the incoming Request URI Header of ingress SIP messages.

Typically, the “domain” portion of the URI is the Ingate IP Address or FQDN. Port and Transport

can be used, but a match only occurs if both port and transport parameters are in the SIP RURI.

2.4 Regexp substitution and GHM – Forward To

The Forward To attribute of the Dial Plan defines where to send the SIP traffic. A specific

destination SIP URI address is defined to forward the call to. Here you may enter Regular

Expressions for the Dial Plan, used to define where the Ingate should forward the request using the

Dial Plan. Here you define GHM and use HAV.

How To Guide: Generic Header Manipulation & Regular Expressions Page 10 of 60

2.5 SIP Traffic – Routing

With Static Registrations, a certain user@address will additionally be redirected (forked) to another

or more user@address. Even if an address is configured to be forwarded, the SIParator will contact

the original addressee.

In the respective Forward To field you may use HAV and GHM, but not regular expressions.

2.6 SIP Trunk – Trunk 1-n

Remember: blue = match, red = substitute and GHM

From PBX/SIP Number/User - A regular expression – matches PBX extension, or user. For

outgoing calls from the PBX to the ITSP, this field matches the From SIP URI. The row that matches

first, is used for the outgoing call.

User Name - The SIP user name or phone number to use in the From SIP URI for outgoing calls and

registrations towards the ITSP. This is often the telephone number of the ITSP SIP account and

How To Guide: Generic Header Manipulation & Regular Expressions Page 11 of 60

usually the number displayed as caller ID on the PSTN. Here, you can use the result of a sub-

expression from a match in a regular expression defined in the "From Number/User" field on the

same row.

Identity – This field is for filling a P-Asserted-Identity or P-Preferred-Identity

header in egress messages to your ITSP. You can choose on the trunk page which of the above two

variants is sent.

Note: The GHM $1?P-Asserted-Identity=__remove removes P-Asserted-Identity

headers from ingress messages upon egress.

2.7 Incoming messages

The SIP Trunk page is designed to connect IP-PBXs and other SIP endpoints (phones) to an ITSP

SIP Trunking service (using a B2BUA) with one interface to the ITSP and the other to the IP-PBX

and SIP phones.

For incoming SIP messages, the rules for header manipulation of SIP messages are configured in the

GUI for the SIP Trunk Page, in the columns of Incoming Trunk Match and Forward to for PBX

Lines, SIP Lines, and Main Trunk Line.

For every incoming SIP INVITE, each row in the column Incoming Trunk Match, for PBX Lines

and SIP Lines, is checked until match. No match? The values from Main Trunk Line are used.

ITSP

WAN LAN

SIP trunk page
Incoming Trunk Match Forward to

Main trunk line

PBX lines

SIP lines

How To Guide: Generic Header Manipulation & Regular Expressions Page 12 of 60

When there is a match in Incoming Trunk Match field, the call will be forwarded according to the

values in the respective Forward to field of the same row.

For PBX Lines, this is a user to which an incoming call from the ITSP will be forwarded to on the

PBX.

For SIP Lines, this is an arbitrary SIP URI or a SIP user at a domain configured under Local

Registrar, to which an incoming call will be forwarded.

Regular expressions can be used in the Incoming Trunk Match field to catch information from the

R-URI to be used in the Forward to field, where also HAV and GHM can be made.

An example of a regular expression is:

Incoming Trunk Match Forward to
\+1306(7707[0-9]{2}) 0$1

\+1306(7707[0-9]{2}) 0$1;user=phone

This will result in an incoming call to +1306770713, forwards to the PBX number 0770713. Here

you may also add URI parameters such as ";user=phone" at the end of the domain of a complete

URI.

2.8 Outgoing messages

Outgoing calls are processed through the Dial Plan. The Dial Plan table is searched line by line from

the top for a match from the PBX of the dialed number, where a SIP Trunk page is selected.

At the SIP Trunk Page, the caller’s number (the user part of the From header) will - row by row, from

top to bottom - be checked against the numbers or regular expressions entered in the column From

PBX/SIP Number/User. A match will cause the trunk account under User Name to be used for the

outgoing call.

How To Guide: Generic Header Manipulation & Regular Expressions Page 13 of 60

The results of subexpressions from a match in the column From PBX/SIP Number/User can be used in

the columns Display Name, User Name and Identity.

Display Name – This field modifies the "display" portion of your egress From header. E.g.

entering look at me in the Display Name field gives:

From: "look at me" <sip:alpha@some.com>;tag=99

User Name – This field modifies the user portion of your egress From header. E.g. entering

no_wait_look_at_me in the User Name field gives:

From: <sip:no_wait_look_at_me@some.com>;tag=64

Identity – This field adds a P-Asserted-Identity or P-Preferred-Identity header in

egress messages to your ITSP. You choose on the trunk page which of the above two variants is sent.

E.g. entering bravo@real.com in the Identity field gives:

From: "Display" <sip:alpha@fake.com>;tag=27

P-Asserted-Identity: bravo@real.com

Note: The GHM $1?P-Asserted-Identity=__remove when placed in any of the above

three fields removes P-Asserted-Identity headers from ingress messages (e.g. from PBXes)

upon egress.

To understand how GHM works it is first necessary to understand how regular expressions are used,

see the chapter Regular Expressions – matching your input.

How To Guide: Generic Header Manipulation & Regular Expressions Page 14 of 60

3 Regular Expressions – matching your input

Within the SIP Protocol (RFC 3261), a SIP URI identifies a communications resource. Like all URIs,

SIP URIs may be placed in web pages, email messages, or printed literature. They contain sufficient

information to initiate and maintain a communication session with the resource. In its simplest form a

SIP URI looks like sip:user@host, where the user is the identifier of a particular client

resource at the host being addressed. The term host in this context frequently refers to a domain, a

network location.

Regular expressions increase the capabilities of the Ingate Dial Plan and SIP trunk. The Regular

Expression is used to match the user, host and other parts of the SIP URI.

3.1 Introduction

Why regular expressions? To find our input! Then once we’ve matched (found) what we are looking

for, do something with it. Perhaps you’ve encountered command-line tools such as sed, or awk.

They all use regular expression notation. Let’s say we want to find the text string:

small fluffy dog

Then once we’ve found it, modify it. We want to modify it to:

big fluffy dog

We don’t want to do this manually every time – we want to automate this, and be sure that our

automation will process only exactly those matches we are looking for – no more, no less. Now we

know what we want to do – we just need to generalise, or specify, our regular expression which will

look for matches. These regular expressions go in fields marked in BLUE in the section Where to

configure GHM :

small (fluffy dog)

Let’s say that we now have a match. Let’s use a regular expression substitution – this is just a text

string which expresses what we captured, at the earlier step, and includes any new, additional custom

text – these regular expression substitutions go in fields marked in RED in the section Where to

configure GHM:

big $1

This is the same process when dealing with SIP and telephone numbers. Identify the nature of the

request (country code for least cost routing? is it an emergency number?):

sip:+46812345678@xyzcorp.com

Then once we’ve found it, we want to modify it to:

sip:0812345678@xyzcorp.com

We might do that with this regular expression:

sip:user@host

How To Guide: Generic Header Manipulation & Regular Expressions Page 15 of 60

sip:\+46([0-9]{9})@xyzcorp.com

Then get our intended result with the following regular expression substitution:

sip:0$1@xyzcorp.com

3.2 Explanation

(.*) Matches and stores any amount of characters in $1

sip:(.*)@(.*) Match and store user in $1 and host in $2 if applied to input string

sip:user@host

Sub-expressions are ordinal to their starting parenthesis and referred to by $number. In other words,

the order and hierarchy of the parentheses determines the regular expression substitution order E.g.

Expression Matches String Produces
(((dog) pig) cat) dog pig cat $0 = dog pig cat

$1 = dog pig cat

$2 = dog pig

$3 = dog

In the expression sip:(.*)@(.*) which matches any Request-URI like

sip:user@ingate.com, there are two referable sub-expressions: user, which is held in $1, and

ingate.com, which is held in $2.

Sub-expressions can also be nested, as in the expression (sip:(.*))@ingate.com, which

matches any Request-URI like sip:user@ingate.com, there are two referable sub-expressions:

sip:user, which is referred to as $1, and user, which is referred to as $2.

3.3 Standard regular-expression notation

The Regular Expression flavor used in Ingate SIParator/Firewall is “POSIX Extended Regular

Expressions (ERE)”.

Note: Character matches are case sensitive.

Operator Description
[] Matches any single character that is contained within the brackets. For example:

[abc] Matches any single character in the set a, b, or c.

[a-z] Matches any single character in the range a-z but not A-Z

[1-8] Matches any single character in the range 1 to 8.

[369] Matches any single character in the set 3, or 6, or 9.

[^] Matches any single character that is not contained within the brackets. For example:

[^abc] Matches any single character not in the set a, b, or c.

. Matches any single character.
, Matches the minimum specified characters or more.
[0-9] Matches any decimal digit.
[^0-9] Matches any non-digit.
\s Matches any whitespace character.

sip:user@host

How To Guide: Generic Header Manipulation & Regular Expressions Page 16 of 60

\S Matches any non-whitespace character.
\w Matches any word (alphanumeric) character.
\W Matches any non-word (alphanumeric) character.
(abc) (abc) Matches the sequence abc and stores it as a variable which may be used in

later expressions. (and) are also used for grouping.

$1 The $ symbol is used to recall expressions that have been stored via ()-variables which

are numbered according to the capture hierarchy. $1 refers to the first variable stored,

and $2 refers to the second variable stored, etc.

a|b Matches a or b
+ Matches the preceding expression one or more times.
? Makes preceding expression optional; if the preceding is inside () brackets, e.g.

(345)? then that 345 is optional.

* Matches the null string or any number of repetitions of the preceding expression.
{m} Matches exactly m repetitions of the preceding expression.
{m,n} Matches from m to n (inclusive) repetitions of the preceding expression.
{m,} Matches m or more repetitions of the preceding expression.
^ Matches the start of the string.
$ Matches the end of the string.

3.4 Escape special characters

Meta characters are characters with a special meaning in Regular Expressions. There are a number of

characters with special meanings: \ ^ $. | ? * + () [] { } . If you want to use any

of these characters as a literal in a Regular Expression (i.e. to find these exact characters in a source

string), you need to escape them in your RegExp by using a backslash. For example, + is escaped as

\+ and so to match +46701234567 we use \+46701234567.

Expression Does Not Match String Produces
sip:+46(5552345)@corp.com sip:+465552345@corp.com $1 =

Expression Matches String Produces
sip:\+46(5552345)@corp.com sip:+465550505@corp.com $1 =

5550505

Why? In the expression sip:+46 the portion + is a quantifier for the colon character, so :+ looks

for 1 (one) colon character.

3.5 Routing calls using the Dial Plan and the SIP trunk Page

The dial plan and the SIP Trunk pages dictate how to route calls. From whom to accept calls, and to

where to send calls. Using regular expressions in the dial plan and the SIP trunk page allows you to

generically specify a range of numbers, range of domains, or other set of specific digits.

Regular expressions are a flexible way of delivering patterns that match a unique set of criteria. For

example, if you specify the regular expression [0-9]{7,} Ingate Firewall/SIParator recognizes

seven or more instances of digits zero to nine. In other words, a telephone number.

How To Guide: Generic Header Manipulation & Regular Expressions Page 17 of 60

3.6 Example Regular Expressions in the Matching From Header

The purpose of the Matching From Header table is to narrow the source selection at ingress. It

exclusively examines the From header.

SIP URI Example Description Equivalent Regular Expression

7-digit number @ Any Domain or IP

7-digit number @ IP Address

7-digit number @ Domain

sip:[0-9]{7}@.*

sip:[0-9]{7}@12.34.56.78

sip:[0-9]{7}@sip_domain.com

North American Toll-free number: 1+800, 1+866,

1+877, 1+888+7 digits @
sip:18(00|66|77|88)[0-9]{7}

@

7-digit number, beginning with optional 9 @ sip:9?[0-9]{7}@

4-digit number (as an extension) starting with 5 @ sip:5[0-9]{3}@

4-digit number not starting with 36 @ sip:(?36)[0-9]{4}@

Anyone @ Anywhere

Anyone @ IP Address

Anyone @ Domain

sip:.*@.*

sip:.*@12.34.56.78

sip:.*@sip_domain.com

7-digit numbers within the London area codes 0207

and 0208@
sip:020[78][0-9]{7}@

7-digit number with 0845 prefix @ 6 to 7-digit

number with 0845 prefix @

6-digit number with 0845 prefix @

sip:0845[0-9]{7}@

sip:0845[0-9]{6,7}@

sip:0845[0-9]{6}@

7-digit number with 0845 or 0870 prefix @

Note: the first will also match 0875 or 0840, the

second won’t

sip:08[74][05][0-9]{7}@

sip:(0870|0845)[0-9]{7}@

Any 9 to 10-digit numbers prefixed with optional 00

and then mandatory 44
sip:0?0?44[0-9]{9,10}@

From Ingate >= 6.2.0, RegEx matches captured via the Matching From Header table can be later

accessed in the Forward To RegExp field via $fx, i.e. $f1, $f2 etc where f signifies From. For

example:

Expression Matches String Produces
sip:(5552345)@corp.com sip:5552345@corp.com $f1 =

5552345

sip:(555([0-9]{4}))@corp.com sip:5550505@corp.com $f1 =

5550505

$f2 = 0505

3.7 Regular Expressions in the Matching Request URI

The purpose of the Matching Request-URI table is to match a Request URI of the SIP messages at

ingress to determine where it wants to go. To effectively determine routing. It exclusively examines

the Request URI of ingress SIP requests (INVITE, REGISTER, …).

How To Guide: Generic Header Manipulation & Regular Expressions Page 18 of 60

Typically, the "domain" portion of the URI is the Ingate IP Address or FQDN. Port and Transport

can be specified, but the RegExp will only produce matches if both port and transport parameters

exist in a URI at ingress.

SIP URI Example Description Equivalent Regular Expression

7-digit number @ Any Domain

7-digit number @ IP Address

7-digit number @ Domain

sip:([0-9]{7})@.*

sip:([0-9]{7})@12.34.56.78

sip:([0-9]{7})@sip_domain.com

Emergency numbers 112 or 999 @
Warning: not all SIP providers have access to

emergency service numbers.

sip:112|999@

North American Toll-free number: 1+800,

1+866, 1+877, 1+888+7 digits @
sip:18(00|66|77|88)[0-9]{7}@

7-digit number, beginning with optional 9 sip:9?[0-9]{7}@

4-digit number starting with 5 sip:5[0-9]{3}@

4-digit number not starting with 36 @ sip:(?36)[0-9]{4}@

Remove Prefix "1613" on any Username @

Anything

$1 is provided by (.*) i.e. 1613 is matched but

not stored. If the number doesn't begin "1613",

there will be no match.

sip:1613(.*)@.*

Remove optional Prefix "+" on any Username

@

Note: the "+" character is escaped to match

sip:\+?(.*)@

Any Username @ Any Domain with Port and

Transport – case sensitive

Any Username @ IP Address with Port and

Transport – case sensitive

Any Username @ Domain with Port and

Transport – case sensitive

sip:(.*)@.*:5060;transport=UDP

sip:(.*)@12.34.56.78:5060;transp

ort=UDP

sip:(.*)@sip_domain.com:5060;tra

nsport=UDP

7-digits within area codes 0207 and 0208@ sip:020[78][0-9]{7}@

7-digit number with 0845 prefix @

6 to 7-digit number with 0845 prefix @
sip:0845[0-9]{7}@

sip:0845[0-9]{6,7}@

6-digit or longer number with 0870 prefix @ sip:0870[0-9]{6,}@

7-digit number with 0845 or 0870 prefix @

Note: the first can also match 0875 or 0840, the

second won’t

sip:08[74][05][0-9]{7}@

sip:(0870|0845)[0-9]{7}@

Any 9 to 10-digit numbers prefixed with

optional 00 and then mandatory 44
sip:0?0?44[0-9]{9,10}@

How To Guide: Generic Header Manipulation & Regular Expressions Page 19 of 60

Optional 353 prefix with or without optional 00

start, then optional 0 with optional 1-2 digit

area code, then mandatory 7-digit number @

any domain.

Note: The following URIs will match:
sip:0035312345678@abc.com

sip:35312345678@asdf.com

sip:12345678@asdf.com

sip:2345678@abc.com

sip:012345678@domain.com

sip:0212345678@wherever

sip:(((00)?353)?0?[0-9]{1,2})?([

0-9]{7})@.*

Note: in all of the above expressions, there is no match if the RURI isn't pre-pended with sip:, i.e.

requests beginning with tel: will not match. Also, while sip: is matched, it isn't stored in any of

the above examples. Any SIP RURI at ingress which is not prefixed with sip: is not a valid SIP

URI.

RegEx matches captured via the Matching Request-URI table can be later accessed in the Forward

To RegExp field via $x, i.e. $1, $2.

3.7.1 Examples for a trunk

Let’s say we own the trunk series 5550140 – 5550159, i.e. a range of twenty different extensions, 40-

59. We want an expression which will match the range of 20 extensions, but only 20 extensions, and

not 00-39 or 60-99.

Expression Matches Strings Produces
sip:(55501[0-9][0-9])@xy.com sip:5550100@xy.com

sip:5550163@xy.com

sip:5550199@xy.com

$1 =

5550100

$1 =

5550163

$1 =

5550199

sip:(55501([4-5][0-9]))@xy.com sip:5550140@xy.com

$1 = 555140

$2 = 40

sip:(55501([4-5][0-9]))@xy.com sip:5550159@xy.com

$1 = 555159

$2 = 59

As a result, the appropriate regular expression in this worked case is either of the last two

expressions.

3.7.2 Special Expressions for captures made in Request-URI

From Ingate >= 6.2.0, RegEx matches captured via the Matching Request-URI table can also be later

accessed in the Forward To RegExp field via $rx, i.e. $r1, $r2 etc where r signifies R-URI. For

example:

Expression Matches String Produces
sip:(5552345)@corp.com sip:5552345@corp.com $r1 =

5552345

How To Guide: Generic Header Manipulation & Regular Expressions Page 20 of 60

sip:(555([0-9]{4}))@corp.com sip:5550717@corp.com $r1 =

5550717

$r2 = 0717

3.8 Regular Expressions in the Forward To

A Regular Expression Substitution is used in the Forward To field. It refers to RegExp sub-

expressions matched and captured in the Matching Request-URI table. Sub-expressions are

numbered in the order of their starting parenthesis and referred to in $number fashion.

The Forward To attribute of the Dial Plan defines where and how to send SIP traffic. An arbitrary

string, a RegExp Substitution, or combination thereof, is used to define a destination SIP URI.

You may define lines in the Dial Plan that lack a Forward to definition. This is useful if you for

example are forwarding by ENUM.

SIP URI Example Description Equivalent Regular Expression

Fixed number: 911 @ IP Address

Fixed number: 911 @ Domain
sip:911@12.34.56.78

sip:911@sip_domain.com

Fixed 7-digit number @ IP Address sip:9630933@12.34.56.78

North American long-distance number @

Domain
sip:16139630933@sip_domain.com

North American Toll-free number: 1+800+7

digits @ Domain
sip:18668090002@sip_domain.com

Use Stored Variable $1 @ IP Address

Use Stored Variable $1 @ Domain
sip:$1@12.34.56.78

sip:$1@sip_domain.com

Use Stored Variable $1 @ Domain with Port and

Transport
sip:$1@sip_domain.com:5060;transp

ort=UDP

Add To Header from ingress message into

Request URI @ Domain
sip:$(to.user)@sip_domain.com

Add To Header from ingress message into

Request URI and To Host from ingress message

into Domain and send to specified address

sip:$(to.user)@$(to.host)

Add +1 in front of To Header from ingress

message in Request URI @ Domain
sip:+1$(to.user)@sip_domain.com

Note: The table includes examples of HAVs, e.g. $(to.user), see the chapter Header Access

Variables for explanation.

3.9 Examples of Basic Regular Expressions

Here are some basic examples of some standard Regular Expressions to be used in the Forward To

columns either of the Dial Plan or the SIP Trunk page (without the use of the Generic Header

Manipulation). The examples assume that there is a match done where $1 contains the user part of

the Request-URI from ingress.

How To Guide: Generic Header Manipulation & Regular Expressions Page 21 of 60

Forward $1 to domain or IP … specify destination port with :port

sip:$1@192.168.1.1 sip:$1@192.168.1.1:5060

sip:$1@example.com sip:$1@example.com:5060

Force B2BUA on … specify UDP transport via transport parameter

sip:$1@192.168.1.1;b2bu

a

sip:$1@192.168.1.1;transport=UDP

sip:$1@example.com;b2bu

a

sip:$1@example.com;transport=UDP

Add + Prefix

sip:+$1@192.168.1.1

sip:+$1@example.com

Add Any Combination of the above

sip:$1@192.168.1.1:5060;transport=TCP;b2bua

sip:$1@example.com:5060;transport=TCP;b2bua

3.10 Additional information

Here are a few resources we recommend to read more about to build and test regular expressions

before they go live:

▪ http://www.regular-expressions.info/

▪ http://gskinner.com/RegExr/ or https://regexr.com/

▪ http://renschler.net/RegexBuilder/

▪ echo (Test expression) | grep -E (regexp)

http://www.regular-expressions.info/
http://gskinner.com/RegExr/
https://regexr.com/
http://renschler.net/RegexBuilder/

How To Guide: Generic Header Manipulation & Regular Expressions Page 22 of 60

4 Special Tags in the Ingate Firmware

4.1 Rewrite From header on egress

You can use the legacy method to re-write the From header on egress instead of the more complex

GHM. Add ;from= and a quoted, valid SIP URI to the end of your RegExp.

Forward To …or this… Reg Expr:

sip:$1@192.168.1.1;from="sip:+13335550000@1.2.3.4"

Note: the From header is the only header that can be changed in this legacy way i.e. using

the ;uriparams format. This way, the B2BUA is not engaged.

All headers can be added or changed via GHM, i.e. ?From=…

See the chapter Generic Header Manipulation (GHM).

Do not use legacy ;from= together with newer GHM From=… you will get unpredictable results.

4.2 183 to 180 conversion

If you want to convert a 183 Session Progress at ingress from the ITSP to a 180 Ringing on egress

towards the PBX add ;cnv183 to the Domain Name or IP Address in the Service Provider

Domain field at the SIP Trunk page. Note: this method should remove SDPs.

Service Provider Domain:

10.20.30.40;cnv183

4.3 Do not REGISTER to trunk server(s)

When using registration (REG = Yes) and a fallback domain, the Ingate will normally SIP

REGISTER to both. Adding the ;no-reg flag to either of the domains will skip registering to that

domain.

Add ;no-reg to the Domain Name or IP Address in the Service Provider Domain field at the SIP

Trunk page. Requires firmware >= 6.0.3.

Service Provider Domain:

10.20.30.40;no-reg,10.20.30.41

This disables sending of REGISTER to a proxy when multiple proxies are entered in the Service Provider
Domain.

How To Guide: Generic Header Manipulation & Regular Expressions Page 23 of 60

4.4 Do not automatically monitor trunk server(s) with SIP OPTIONS

When using registration & a fallback domain, adding the ;no-mon flag to either of the domains will

skip auto monitoring that domain. Auto-monitoring commences after the Blacklisting timeout

duration after the first successful registration to the ITSP.

To cease monitoring of an ITSP proxy domain, add ;no-mon to the Domain Name or IP Address in

the Service Provider Domain field at the SIP Trunk page. Requires firmware >= 6.0.3. In firmware

>= 6.0.3, SIP Trunk servers are automatically monitored.

Service Provider Domain:

sip.itsp.com,sip2.itsp.com;no-mon

This disables sending of SIP OPTIONS to a proxy when multiple proxies are entered in the Service Provider
Domain.

4.5 Force B2BUA on

Forward To …or this… Reg Expr:

$1@192.168.1.1;b2bua

4.6 B2BUA with media via the main dial plan

In order to relay media i.e. to anchor media at the SBC when e.g. releasing or diverting calls back to

the operator – this option is synonymous with the “Relay media” trunk page option: on the main dial

plan, add ;b2buawm. A bug in later 5.0.x firmware series prevented this expression from working

properly and was fixed in the 6.0.2 firmware. Note, you must have a matching RegExp for the $1

parameter to be filled. This RegExp is used on the main Dial Plan, Forward To rows:

Forward To …or this… Reg Expr:

$1@10.20.30.40;b2buawm

4.7 Explicitly state transport

SIP RFC 3261 specifically states that two URIs are not synonymous if a port or implied parameter is

absent in one but present in a second while all other parameters are equal. For implied parameters,

such as transport, their presence – or absence – can be important. A UAC must specify its transport

when registering to a proxy, if it is not UDP:

Reg Expr:

john@10.20.30.40;transport=tcp

Note that RFC3261 deprecates the use of transport=tls although its use on an Ingate is accepted for

compatibility. If an ITSP Contact: header contains the transport parameter transport=tcp in

one response, but removes it in another response – implying the SIP default transport=udp – the

https://tools.ietf.org/html/rfc3261#section-19.1.4
https://tools.ietf.org/html/rfc3261#section-26.2.2

How To Guide: Generic Header Manipulation & Regular Expressions Page 24 of 60

transport will be deemed to have changed on the ITSP side, and the Ingate will contact the new

destination. If the ITSP cannot handle this transport change (where two independent daemons listen

for traffic via the two different transports which may be unaware of each other), this is an error that

the ITSP must correct.

4.8 Specifying Escape Characters (dial string) for e.g. Telia SIP trunk

Reg Expr:

;escape-chars=*#

4.9 Explicitly handle only specific METHODS

Requires firmware >= 4.10.1

Reg Expr – as a tag to a regular expression:

;methods="ACK,INVITE,CANCEL,OPTIONS"

The above regular expression has the effect that only the named SIP methods ACK, INVITE,

CANCEL and OPTIONS are to be handled. Note that BYE cannot be handled in the dial plan.

E.g. (under main dial plan)

Matching RURI:
sip:172.18.137.113@{0}

Forward To Reg Expr:
10.3.1.1;methods="OPTIONS"

The above expression has the effect that only the SIP method OPTIONS is handled/affected.

e.g. (under SIP Traffic → Routing → User Routing)

User:
bob@proxy.lan

Action:
Parallel

Forward to:
sip:bob@presence-server.corp.lan;methods="PUBLISH,SUBSCRIBE,INFO"

4.10 Force a specific response, e.g. 503, 5xx, 6xx

Requires firmware >= 6.2.2

sip:172.18.137.113@

How To Guide: Generic Header Manipulation & Regular Expressions Page 25 of 60

Add ;respond="xxx" to Reg Expr in Forward To. If found, a SIP response with the specified

status code xxx is sent. Note: the code must be surrounded by quotes ("xxx"). It can take 1

parameter: ?Retry-After=yyy which adds such a header to the response being sent.

Note: ?Retry-After is not a real GHM, it just uses the same syntax.

If you wish to put the Ingate into a maintenance mode and reject new requests with 503 which

include a Retry-After header with a value of 1800 seconds (30 minutes).

Forward To Reg Expr:
;respond="503"?Retry-After=1800

Add a new dial plan row at row 1 which uses only this Forward To and this will respond to all traffic

with your specific code. For example:

Forward To

Name
No

.

Use

This ...
... Or This ... Or This

... Or

This Use

Alia

s IP Accou

nt

Replacem

ent

Domain

Por

t

Transpo

rt
Reg Expr

Trun

k

SERVI

CE

1 - - ;respond="503"?Retry-Afte

r=1800

- -

Dial Plan

No.
From

Header

Request-

URI
Action

Forward

To

Add Prefix ENUM

Root

Time

Class
Comment

Forward ENUM

1 - - Forward SERVICE - - SERVICE

503

If you wish to reject new requests with a 600 e.g.

Forward To Reg Expr:
;respond="600"

4.11 Support q-value in Trunk User Name

Requires firmware >= 6.2.0

Add the tag ;q=0.5 in the User Name field on the Trunk page to add the q-value as a parameter to the

Contact header in REGISTERs sent from the Trunk page.

e.g.

How To Guide: Generic Header Manipulation & Regular Expressions Page 26 of 60

Main Trunk Line

No. Reg

Outgoing Calls Authentication Incoming Calls

 Display

Name
User Name Identity

User

ID
Password

Incoming

Trunk Match

Forward

to

1 No mytrunk;q=0.7

4.12 Support parallel forward in the dial-plan

Requires firmware >= 6.3.0

Add the tag ;parallel in the "Reg Expr" field in the "Forward To" table in the "Dial Plan". This

makes the Forward To sub-rows send in parallel (as opposed to send in sequence).

e.g.

Forward To

1 ;parallel Trunk 1

2 ;parallel Trunk 1

Or

Forward To

1 sip:$1@192.168.1.10;parallel

2 sip:$1@192.168.1.11;parallel

4.13 Forward REFER through the B2BUA

Requires firmware >= 6.4.1

Add the tag ;b2buafwdref in the "Reg Expr" field in the "Forward To" table in the "Dial Plan".

This works like ;b2bua but forwards REFER through the B2BUA.

e.g.

How To Guide: Generic Header Manipulation & Regular Expressions Page 27 of 60

Forward To

1 ;b2buafwdref Trunk 1

2 ;b2buafwdref Trunk 1

Or

Forward To

1 sip:$1@192.168.1.10;b2buafwdref

2 sip:$1@192.168.1.11;b2buafwdref

-End chapter-

How To Guide: Generic Header Manipulation & Regular Expressions Page 28 of 60

5 Header Access Variables

5.1 Headers

The Ingate firmware has a range of variables for use in RegExp and GHM which provide (currently)

read-only access to any header, URI, or part thereof. Variables must be enclosed in $(…) or

$([…]). Where a SIP URI is:
dname <sip:user;tgparams:password@host:port;uriparams>;params

Variable [URI.portion] Explanation
cfg .user The user part of the Local Registrar account

.host As above, host part.
ruri .user User part of Request-URI

.host Host part.

.uriparams URI parameters.
header_name

These parts only

work on headers

which contain valid

<sip:...> URIs e.g.:

From, To, Request-

URI, Route,

Record-Route,

Contact, etc.

.user User part of header_name between sip(s): and @

.userinfo3 User, password, trunk-params, found at ingress up to the @

symbol.* Everything between sip(s): and @

 .user User (i.e. phone number) in parent .userinfo

 .params Any RFC4904 trunk-params in parent .userinfo

 .password Any password in parent .userinfo

 .cpassword Any colon prepended password in parent .userinfo

.userinfoat2 As above*, but includes the final @.

.password Password part of "header_name" (e.g. to.password). *

.cpassword2 As password; but output is prepended with colon

(“:password”) 2. Evaluates if

header_name .userinfo contains a password. *

.host Host part of header_name

.port Port part of header_name **

.cport2 As port, but prepended with a colon “:”. Evaluates if

header_name contains a port. **

.dname Display name of header_name if present.

.dnameuri1 Display name and URI of header_name.***

.uqdname Unquoted display name

.params Header parameters (outside of <sip:URI>) e.g. ;tag=asdf

.uriparams Parameters within the URI: e.g. ;transport=udp

.telnum tel: URI

.uri Whole URI string (after header_name:) of a header

considered a URI ***
hdr .header_name The 1st ingress header_name instance content

.header_name

[2]

The 2nd ingress header_name instance content

rawhdr .header_name The unescaped ingress header_name content

ip .ethx The IP address of eth network interface, (e.g. ip.eth1)

How To Guide: Generic Header Manipulation & Regular Expressions Page 29 of 60

 1 (Ingate >= 5.0.4) 2 (Ingate > 6.0.0) * Only supplies user if no password at

ingress. **: returns null if no port value at ingress ***: includes <sip:...>

if present at ingress, but lacks params
3 Sub-variables available. See below for example usage.

This is a SIP URI:
 dname <sip:user:password@host;uriparams>;params

It might be constructed using these variables:
$(x.dname)

<sip:$(x.user):$(x.password)@$(x.host)$(x.uriparams)>$(x.params)

Alternatively:
$([x.dname])

<sip:$([x.user]):$([x.password])@$([x.host])$([x.uriparams])>$([x.p

arams])

Which would be formed by the encoded string:
$([x.dname])%20%3Csip:$([x.user]):$([x.password])%40$([x.host])$([x

.uriparams])%3E$([x.params])

This is a Header (not a URI):
Some-Header: Blah blah blah – something, version 1.2

This is a SIP URI with RFC4904 trunk group parameters:
 dname <sip:user;tgrp=001;trunk-

context=example.com:password@host;uriparams>;params

It is constructed using these variables and sub-variables3:
$(x.dname)

<sip:$(x.userinfo.user)$(x.userinfo.params):$(x.userinfo.password)@

$(x.host)$(x.uriparams)>$(x.params)

5.2 Body Access Variable

Variable [URI.portion] Explanation
body .plain1 Returns the whole body – this is normally the SDP. For

multipart messages, this returns all content after the double

CR/LF e.g.: $([body.plain])

This is only intended to be useful to analyze the body.
 1 (Ingate >= 6.2.0)

Example:

sip:$(REGMATCH_m=video_REGMOD_videouser@mycorp.com_REGELSE_.*_REGMO

D_audiouser@mycorp.com_REGEND.body.plain)

How To Guide: Generic Header Manipulation & Regular Expressions Page 30 of 60

produces videouser@mycorp.com if the message body contains 'm=video', otherwise

it produces audiouser@mycorp.com

5.3 The difference between $(x.user) and $([x.user])

All HAV and BAV are invoked by enclosing the variable in $parentheses – i.e. the $(variable)

syntax. The same is achieved by using $([variable]) – the difference being that, if the returned

content of $([variable]) is empty, then the result is a zero-length string, i.e. no output. If

$(variable) evaluates as empty, because for example its match did not exist at ingress, the literal

string $(variable) is output. The $([variable]) syntax is available from firmware >=

4.10.1. As a convenience, in firmware >= 6.2, an empty $(variable) returns a zero-length string,

i.e. no output.

Note: To use any variables, a regular expression match must have been done (Main Dial Plan,

Matching R-URI), together with a regular expression substitution. E.g. $1?header=…

If you only want to re-write the From header, use the legacy method in the Forward To Reg Expr

field and append a ";from=" parameter.

5.4 Port and Password

Parameters password and port are properties of an address and shall be prepended by a colon.

But a colon does not independently appear in a SIP URI without it causing a parsing problem. If you

write the expression …$(from.user)%40(from.host)%3a(from.port)… and the ingress

From header contained no port parameter, your expression evaluates to 123@192.168.1.1:

which is an invalid URI, since there is no port value after the colon. If it is unknown in advance

whether port or password would be found in an ingress SIP URI, the following workaround CHOs

(which require firmware >= 5.0.4) can help:

$(CONDIF.from.port)$(CONDYES.PLAIN.%3A)$(CONDYES.from.port)

or
$(CONDIF.from.password)$(CONDYES.PLAIN.%3A)$(CONDYES.from.password)

Convenience variables for the above are available in Ingate firmware >= v6.0:

$([header_name.cport]) yields e.g. :5060

$([header_name.cpassword]) yields e.g. :p@$$word

5.5 Indices, indexes, [?]

- index [0] is synonymous with: no index [] and index [1]; it gets the first instance of that header

- index [1] is synonymous with the first instance of that header (the one at the top)

How To Guide: Generic Header Manipulation & Regular Expressions Page 31 of 60

- index [2] is synonymous with the second instance of that header

- index [-1] is synonymous with the last instance of that header (at the bottom)

- index [-2] is synonymous with the second to the last instance of that header.

e.g. Route headers rewritten as HAV:

Route: <sip:route[1].user@route[1].host;route[1].uriparams>

Route: <sip:route[2].user@route[2].host;route[2].uriparams>

Route: <sip:route[3].user@route[3].host;route[3].uriparams>

is the same as

Route: <sip:route.user@route.host;route.uriparams>

Route: <sip:route[2].user@route[2].host;route[2].uriparams>

Route: <sip:route[-1].user@route[-1].host;route[-1].uriparams>

is the same as

Route: <sip:route[-3].user@route[-3].host;route[-3].uriparams>

Route: <sip:route[-2].user@route[-2].host;route[-2].uriparams>

Route: <sip:route[-1].user@route[-1].host;route[-1].uriparams>

5.5.1 Limit the scope of operation

?History-Info=__remove removes all History-Info headers

?History-Info[2]=__remove removes only the second History-Info header

?History_Info=something sets all History-Info headers to the same value something

?History_Info[2]=something sets only the 2nd one to something, the 1st and 3rd remain

unchanged

?History_Info=__remove&History_info=something removes all History-Info

headers and only one new History-Info header with value something is created.

5.5.2 Example INVITE - URIs and headers rewritten as variable (HAV) names

INVITE sip:ruri.user@ruri.host:ruri.port;ruri.uriparams SIP/2.0

Via: via[1].uri

Via: hdr[2].via

To: "to.uqdname" <sip:to.user@to.host>

From: from.dname <sip:from.user@from.host>;from.params

Call-ID: call-id.user@call-id.host

P-Asserted-Identity: sip:P-Identity.user@P-Asserted-Identity.host

Contact: <sip:Contact.user@Contact.host>

Record-Route:

<sip:Record-Route[1].user@Record-Route[1].host;record-route.uripara

ms>

How To Guide: Generic Header Manipulation & Regular Expressions Page 32 of 60

Record-Route:

<sip:Record-Route[-1].user@Record-Route[-1].host;record-route.uripa

rams>

Session-Expires: hdr.session-expires

User-Agent: hdr.user-agent

Supported: hdr.supported

Allow: hdr.allow

Max-Forwards: hdr.max-forwards

CSeq: 1 INVITE

...

5.6 Example equivalences of a From header (built using HAV)

From: from.dname <sip:from.user@from.host>;from.params

is the same as

From: "from.uqdname" <sip:from.user@from.host>;from.params

is the same as

From: from.dname from.uri;from.params

is the same as

From: hdr.from

5.7 Examples

Adding From Header

sip:$1@192.168.1.1;from="sip:$(from.user)@1.2.3.4"

sip:$1@example.com;from="sip:$(from.user)@1.2.3.4"

;from="sip:$(from.user)@example.com"

*Replaces From domain at ingress with "example.com".

Compare:

;from="sip:$f1@example.com"

Replaces From domain at ingress with "example.com". $f1 refers to the Matching From Reg

Expr "(.*)@.*". While $f1 can be part of the user string, $(from.user)is the whole user
string.

The above examples assume that there is a RegExp match and capture done at an earlier stage – the

RegExp fills $1 with a result – this result is a substitution – here, the user part of the Request-URI.

How To Guide: Generic Header Manipulation & Regular Expressions Page 33 of 60

Note: the From header is the only header that can be added or changed in the legacy fashion, e.g.

using the ;from= format. All headers can be added through GHM, including the From header. See

the chapter Generic Header Manipulation (GHM).

How To Guide: Generic Header Manipulation & Regular Expressions Page 34 of 60

6 Call Count Variables

6.1 Call Counters

The Ingate firmware has 1 variable for use in GHM or cURL expressions which provide currently

active call counts to the currently processing destination. It must be enclosed in $(…).

Variable [URI.portion] Explanation
count.calls_to_this_user1

An integer value of how many sessions

active with this username as destination,

identical to the username found in the To:

header of the current request
 1 (Ingate >= 6.2.2)

It is not flexible; you cannot do $(count.john), but only $(count.calls_to_this_user). To

be clear: If the currently processing request (e.g. the incoming INVITE) is processed in the dialplan,

and the call is to john, and there are already 2 other calls which go to john@..., then

$(count.calls_to_this_user) will return 2. So this can be used to get (and, to send via

curl) the number of calls to a username.

Example curl expression:

sip:$curl1(counter.php?did=$(to.user)&cc=$(count.calls_to_this_user))

The REST API server responds either with the call destination, or a cause code to terminate the call.

The back-end web-service looks in a table for the given DID and checks whether there are still

available channels to allow the call, picks the destination and responds with a plain text sip

destination.

6.2 Call Count Logic

The Ingate firmware has logical comparison variables for use in GHM, and more specifically CRE,

which return TRUE or FALSE, based on an integer comparison with a call count. With this in mind,

they must be used within a CT, e.g. CONDIF. They must be enclosed in $(…).

Variable [URI.portion] Explanation
count.calls_to_this_user1 .lt.x Less than x

.le.x Less than or equal to x

.eq.x Equal to x

.ge.x Greater than or equal to x

.gt.x Greater than x
 1 (Ingate >= 6.3.2)

These will also work with future variables which start with count. in case such are implemented.

How To Guide: Generic Header Manipulation & Regular Expressions Page 35 of 60

Examples in context:

$(CONDIF.count.calls_to_this_user.lt.99)$(CONDYES…)$(CONDNO…)

$(CONDIF.count.calls_to_this_user.le.17)$(CONDYES…)$(CONDNO…)

$(CONDIF.count.calls_to_this_user.eq.0)$(CONDYES…)$(CONDNO…)

$(CONDIF.count.calls_to_this_user.ge.21)$(CONDYES…)$(CONDNO…)

$(CONDIF.count.calls_to_this_user.gt.98)$(CONDYES…)$(CONDNO…)

Full example:

sip:user@mycorp.com?From=%3csip%3a$(CONDIF.count.calls_to_this_user

.eq.0)$(CONDYES.PLAIN.33)$(CONDNO.PLAIN.44)%40nowhere.com%3e

This outputs From: <sip:33@nowhere.com> if there are 0 calls to the current callee,

otherwise it outputs From: <sip:44@nowhere.com>

Full example:

sip:conference@$(CONDIF.count.calls_to_this_user.gt.20)$(CONDYES.PL

AIN.192.168.1.11)$(CONDNO.PLAIN.192.168.1.10)

This outputs sip:conference@192.168.1.11 if there are more than 20 calls to the current

callee, otherwise it outputs sip:conference@192.168.1.10

Full example:

$(CONDIF.count.calls_to_this_user.ge.1)$(CONDYES.PLAIN.sip:voicemai

l@pbx1.lan)$(CONDNO.PLAIN.sip:joe@pbx1.lan)

This outputs voicemail@pbx1.lan if there is 1 or more calls to the current callee, otherwise it

outputs joe@pbx1.lan

How To Guide: Generic Header Manipulation & Regular Expressions Page 36 of 60

7 Conditionals

7.1 Conditional Regular Expressions (CRE)

CREs are a form of logic flow, where you can do for example:

If…x …is true, modify x to… y

Else if…q…is true, modify q to… r

On the value taken from header(.portion) at ingress.

Roughly: IF MATCH, then MODIFY, ELSE if match, then MODIFY, ELSE etc… …END.

This is the simplified general logic structure of a CRE:

The expressions are enclosed in $() – they behave as HAV, i.e. provide output for use in a GHM

e.g. $0?From=$(REGMATCH_123_... which must be URI encoded and contain %40 (i.e. an @

symbol). See later examples

The following CRE:

...$(REGMATCH_123_REGMOD_456_REGELSE_(.*)_REGMOD_789_REGEND.from.u

ser)...

first reads the user portion of the From header and then performs the regular match/replace which

must be enclosed by the tags REGMATCH_ and _REGEND as above. Explanation:

How To Guide: Generic Header Manipulation & Regular Expressions Page 37 of 60

▪ Looks for 123 in the user portion of the From header. If the user portion contains 123, then the result is
modified to 456.

▪ else, tries to greedily match anything (.*) against the user portion of the From header, so the result of

the above expression would be 789.

This was a simplified example. In practice CRE can be much more complex.

7.1.1 Available statement keywords

CRE $(action…) statement keywords available for logic flow include:

$(REGMATCH_…

REGMOD_…

REGELSE_…

REGEND.…)

Note: REGMOD, REGELSE and REGEND statements cannot be orphaned, they must all be subsequent

to a REGMATCH type statement.

7.1.1.1 The REGMATCH action statement

This is the start of your logic examination. This keyword tries to perform a match using a string or

regular expression. E.g. to match the number string 123 or 456 you could use the statement:

$(REGMATCH_[0-9]{3}_…)

7.1.1.2 The REGMOD action statement

This statement outputs text based on a preceding REGMATCH statement that matched something from

the input. It actually only outputs text. Its output values are used if the preceding REGMATCH

matched. It can be augmented with e.g. $1 if the REGMATCH captured something. To modify jose

to noway you could use the expression:

$(REGMATCH_jose_REGMOD_noway_…)

7.1.1.3 The REGELSE action statement

This statement behaves identically to a REGMATCH statement, is subsequent to both a REGMATCH

statement and a REGMOD statement e.g.

$(REGMATCH_[0-9]{3}_REGMOD_000_REGELSE_jose_REGMOD_noway_…)

Because logic is evaluated serially from left to right, you may want to ensure your logic flow starts

more specifically/uniquely and then becomes more general e.g.:

$(REGMATCH_123_REGMOD_bingo_REGELSE_[0-9]{3}_REGMOD_dingo_…)

7.1.1.4 The REGEND action statement

This statement terminates a CRE analysis and is sibling to a header or its portion from ingress. E.g.

How To Guide: Generic Header Manipulation & Regular Expressions Page 38 of 60

$(REGMATCH_[0-9]{3}_REGMOD_000_REGEND.from.user)

The above statement looks for a three-digit string in the user portion of the from header.

Once your statement is closed, i.e. REGEND, if there are matches from ingress input, the

$(statement…) provides output.

7.1.2 Worked Examples

7.1.2.1 Sweden E164 Number Normalization
The following expression will perform E164 normalization based on the From header of a telephone

number (i.e. user portion) for Sweden:

▪ If the number starts with (^) a + followed by only digits until its end ($), leave the + and digits as is

▪ If the number starts with (^) 00 followed by only digits until its end ($), replace 00 with + and leave the
digits as they are

▪ if the number starts with (^) 0 followed by only digits until its end ($), add +46 followed by the digits after
the initial 0

▪ else, supply the number unmodified

The following is one continuous string:

...$(REGMATCH_^\+([0-9]+)$_REGMOD_+$1_REGELSE_^00([0-9]+)$_REGMOD_

+$1_REGELSE_^0([0-9]+)$_REGMOD_+46$1_REGELSE_(.*)_REGMOD_$1_REGEND

.from.user)...

Note: The result from the match from each REGMATCH_ tag respective REGELSE_ tag is valid only

for a replacement in the respectively immediately following REGMOD_ tag.

7.1.2.2 USA E164 Number Normalization
The following expression will perform E164 normalization based the From header of a telephone

number (i.e. user portion) for USA:

▪ If the number already starts with a + followed by only digits, leave the + and digits as they are

▪ If the number starts with 001 followed by only digits, replace the 001 with +1 and leave the digits as they
are

▪ if the number starts with 1 followed by only digits, add +1 followed by the digits after the initial 1

...$(REGMATCH_^001([0-9]{10})$_REGMOD_+1$1_REGELSE_^1([0-9]{10})$_REGMOD_+1$1_R

EGELSE_([0-9]{10})$_REGMOD_+1$1_REGEND.from.user)...

7.1.2.3 Generic Normalization into a + prefixed 8-12 digit phone
number string

Rule

Order Look for the Prefix… …and change it (add prefix) to
1st 00 +

2nd 0 + (national) e.g. +31

3rd + + (no change)

How To Guide: Generic Header Manipulation & Regular Expressions Page 39 of 60

4th (anything) +

As a Regexp

Order Match (and capture) Modify
1st ^00([0-9]{8,12})$ +$1

2nd ^0([0-9]{8,12})$ +31$1

3rd ^+([0-9]{8,12})$ +$1

4th ^(.*)$ +$1

Expression

 Match Modify
$(REGMATCH_ ^00([0-9]{8,12})$ _REGMOD_ +$1 _REGELSE_

 ^0([0-9]{8,12})$ _REGMOD_ +31$1 _REGELSE_

 ^+([0-9]{8,12})$ _REGMOD_ +$1 _REGELSE_

 ^(.*)$ _REGMOD_ +$1 _REGEND)

Resulting expression which operates on user portion of the From header

$(REGMATCH_^00([0-9]{8,12})$_REGMOD_+$1_REGELSE_^0([0-9]{8,12})$_RE

GMOD_+31$1_REGELSE_^+(.*)$_REGMOD_+$1_REGELSE_^(.*)$_REGMOD_+$1_REG

END.from.user)

The URI Encoded expression which produces a valid From header, taking from the user portion

of From header at ingress:

?From=%3csip%3a$(REGMATCH_^00([0-9]{8,12})$_REGMOD_+$1_REGELSE_^0([

0-9]{8,12})$_REGMOD_+31$1_REGELSE_^+(.*)$_REGMOD_+$1_REGELSE_^(.*)$

REGMOD+$1_REGEND.from.user)%40$(from.host)$([from.uriparams])%3e$

(from.params)

Worked Example Results

Phone # …is modified to… …due to reason
112 +112 ^(.*)$ → +$1 3 digits, no 00, 0 or +

13009865555 +13009865555 ^(.*)$ → +$1 11 digits, no 00, 0 or +

9865555 +9865555 ^(.*)$ → +$1 7 digits, no 00, 0 or +

+9865555 ++9865555 ^(.*)$ → +$1 7 digits

03009865555 +313009865555 ^0([0-9]{8,12})$ → +31$1 10 digits, with 0 prefix

008009865555 +318009865555 ^00([0-9]{8,12})$→ +31$1 11 digits with 00 prefix

To avoid 112 → +112 you can modify the expression to:

$(REGMATCH_^00([0-9]{8,12})$_REGMOD_+$1_REGELSE_^0([0-9]{8,12})$_RE

GMOD_+31$1_REGELSE_^+(.*)$_REGMOD_+$1_REGEND.from.user)

i.e.

How To Guide: Generic Header Manipulation & Regular Expressions Page 40 of 60

?From=%3csip%3a$(REGMATCH_^00([0-9]{8,12})$_REGMOD_+$1_REGELSE_^0([

0-9]{8,12})$_REGMOD_+31$1_REGELSE_^+(.*)$_REGMOD_+$1_REGEND.from.us

er)%40$(from.host)$([from.uriparams])%3e$(from.params)

Ingress number strings not 8-12 digits long will not be prefixed with a +, however.

Note: In firmware versions <= 5.0.11 you cannot use $1?From=$(...$1...) – i.e. capture

groups on the trunk page (i.e. where $1 is before and after the “?”), and $REGMATCH expressions

which also contain $1. The workaround is to use $0?From=$(....$1…). See Errata.

7.1.2.4 Forward To based on body content

The following expression in the Forward-to field of the dial-plan:

sip:$(REGMATCH_m=video_REGMOD_videouser@mycorp.com_REGELSE_.*_REGMO

D_audiouser@mycorp.com_REGEND.body.plain)

will forward to videouser@mycorp.com if the message body contains 'm=video', otherwise

it will forward to audiouser@mycorp.com

Note: requires firmware >= 6.2.0

How To Guide: Generic Header Manipulation & Regular Expressions Page 41 of 60

7.2 Conditional Header Output (CHO) and Conditional Body Output (CBO)

Available: Ingate >= 5.0.4

A CHO Outputs Headers, or portions thereof, based on the evaluation, or validation, of Conditions.

Similarly, a CBO Outputs the Body, or portions thereof.

CHO and CBO expressions are composed of one or more Condition Tests (CT) and one or more

Conditional Results (CR) which perform Conditional Actions (CA) or provide one or more

Conditional Output (CO).

CT – test for condition at ingress

CR – then enter a conditional branch result which

 CA – perform conditional actions or

 CO – provide conditional output

In its simplest form, a CHO is: CT → CR → CR:

$(test.…)$(resultX.…)$(resultY.…)

Their syntax is generally

$(test.header.part)$(resultX.output.header.part)$(resultY.action)

where header and part indicate the presence of URI or parts thereof at ingress.

$(test.body.plain)$(resultX.action)$(resultY.action)

where body.plain indicates body presence at ingress.

A simple CHO looks like this:

Conditional Header Output

$(CONDIF.diversion.user)$(CONDYES.diversion.user)$(CONDNO.from.us

er)

$(CONDIF…) test performs a Boolean evaluation of a condition. The result statements

$(CONDYES…) and $(CONDNO…) are expressions which are subsequently evaluated and supply

output, or perform an action depending on which condition holds true.

In the above CHO, when a user portion of a Diversion: header is present in an ingress SIP

message (e.g. from the PBX), the $(CONDIF…) CHT test expression evaluates to true, i.e. the

action yes, then the $(CONDYES…) CR is reached, the CHA action expression output supplies the

$(diversion.user) header portion found at ingress, otherwise i.e. in the absence of a user

portion of a Diversion header, the $(CONDNO…) CHA action expression supplies the

$(from.user) portion of the ingress from header.

Note: This CHO expression evaluates to provide output, which is used to build a new header via a

GHM. See later examples.

In older versions of this document – CHO were historically referred to as CHM (Conditional Header

Manipulation).

How To Guide: Generic Header Manipulation & Regular Expressions Page 42 of 60

7.3 Conditional Test (CT)

CT statements Conditionally Test for headers or their parts. CT statement keywords are all Boolean:

they test a condition and evaluate either to true or to false. CT can also contain a CRE (i.e.

….REGMATCH_ …), since a CRE can also either pass or fail i.e. evaluate to true or to false. See the

section Conditional Regular Expressions (CRE).

This is a Boolean condition test: This is how CT operate:

7.3.1 Available CT statement keywords

All operate in a Boolean fashion: They evaluate either to true or to false based on input conditions.

All are case-sensitive: Condif is not synonymous to CONDIF.

CHT $(test…) keywords available for logic flow include:

$(CONDIF…)

$(CONDIFNOT…)

$(CONDANDIF…)

$(CONDANDIFNOT…)

$(CONDORIF…)

$(CONDORIFNOT…)

They all use the same construction hierarchy, and can contain CREs:

e.g.

$(CONDIF.REGMATCH_…)

$(CONDIFNOT.from.user…)

$(CONDANDIF.REGMATCH_…)

$(CONDANDIFNOT.diversion.domain…)

$(CONDORIF…)

$(CONDORIFNOT.REGMATCH_…)

How To Guide: Generic Header Manipulation & Regular Expressions Page 43 of 60

Example:

sip:joe@$(CONDIF.REGMATCH_test_REGEND.from.user)$(CONDYES.PLAIN.192

.168.1.11)$(CONDNO.PLAIN.192.168.1.10)

Note: ANDIF(NOT) and ORIF(NOT) type statements cannot be orphaned, they must be subsequent

to an IF(NOT) type statement to function correctly.

7.3.1.1 The CONDIF test statement

This statement; opens a CHO.

E.g. to evaluate whether a user portion of a diversion header was found at ingress:

$(CONDIF.diversion.user)

7.3.1.2 The CONDIFNOT test statement

This statement; also opens a CHO.

E.g. to evaluate whether a P-Access-Network-Info header was not found at ingress:

$(CONDIFNOT.P-Access-Network-Info)

7.3.1.3 The CONDANDIF test statement

This statement; continues a CHO; is subordinate to either CONDIF or CONDIFNOT statement.

E.g. to evaluate whether a P-Called-Party-ID header was found at ingress (in addition to prior

logic flow):

$(CONDIF…)$(CONDANDIF.P-Called-Party-ID)

7.3.1.4 The CONDANDIFNOT test statement

This statement; continues a CHO; is subordinate to either CONDIF or CONDIFNOT statement.

E.g. to evaluate whether a P-Visited-Network-ID header was not found at ingress (in addition

to prior logic flow):

$(CONDIFNOT…)$(CONDANDIFNOT.P-Visited-Network-ID)

7.3.1.5 The CONDORIF test statement

How To Guide: Generic Header Manipulation & Regular Expressions Page 44 of 60

This statement; continues a CHO; is subordinate to either CONDIF or CONDIFNOT statement.

E.g. to evaluate whether a P-Charging-Function-Addresses header was found at ingress

(in addition to prior logic flow):

$(CONDIF…)$(CONDORIF.P-Charging-Function-Addresses)

7.3.1.6 The CONDORIFNOT test statement

This statement; continues a CHO; is subordinate to either CONDIF or CONDIFNOT statement.

E.g. to evaluate whether a P-Charging-Vector header was not found at ingress (in addition to

prior logic flow):

$(CONDIFNOT…)$(CONDORIFNOT.P-Charging-Vector)

How To Guide: Generic Header Manipulation & Regular Expressions Page 45 of 60

7.4 Conditional Results (CR)

CT – test for condition at ingress

CR – then enter a conditional branch result which

 CA – perform conditional actions or

 CO – provide conditional output

CR statements Conditionally provide Results based on headers or their parts: they provide entry into

a branch result. CR statements contain conditional actions – CA or provide conditional output – CO.

CR are case-sensitive: Condyes is not synonymous to CONDYES.

7.4.1 Available CR keywords

CR $(result…) keywords available for logic flow include:

$(CONDYES…)

$(CONDNO…)

The following is a valid chain which provides multiple results based on a single condition:
$(CONDYES…)$(CONDYES…)$(CONDYES…)$(CONDNO…)

7.4.1.1 The CONDYES result statement

This statement is synonymous with the true condition

E.g. for a true condition:

$(CONDIF…)$(CONDYES.action.…)

$(CONDIF…)$(CONDYES.output.…)

7.4.1.2 The CONDNO result statement

This statement is synonymous with the false condition

E.g. for a false condition:

$(CONDIF…)$(CONDNO.action.…)

$(CONDIF…)$(CONDNO.output.…)

How To Guide: Generic Header Manipulation & Regular Expressions Page 46 of 60

7.5 Conditional Actions (CA)

CT – test for condition at ingress

CR – then enter a conditional branch result which

 CA – perform conditional actions or

 CO – provide conditional output

CA statements perform Actions. CA provide zero output. CA are case-sensitive: Abort is not

synonymous to ABORT. CA statements terminate a CR branch. CA statements are subordinate.

7.5.1 Available CA keywords

CR $(…action…) keywords available for logic flow include:

$(…ABORT…)

7.5.1.1 The ABORT action statement

E.g. to abort execution of a logic branch if a user portion of a referred-by header did not exist

at ingress, i.e. no header? Abort by providing zero output:

$(CONDIF.Referred-By.user)$(CONDNO.ABORT)
$(CONDIFNOT.Referred-By.user)$(CONDYES.ABORT)

How To Guide: Generic Header Manipulation & Regular Expressions Page 47 of 60

7.6 Conditional Output (CO)

CT – test for condition at ingress

CR – then enter a conditional branch result which

 CA – perform conditional actions or

 CO – provide conditional output

CO statements provide Output (which can also be zero-length). CO keywords are case-sensitive

except for header(.part): Plain is not synonymous to PLAIN. CO statements terminate a CR

branch. CO statements are subordinate i.e. must follow CR.

7.6.1 Available CO keywords

CO $(output…) keywords available for logic flow include:

$(….PLAIN.…)

$(….header)

$(….header.part)

$(….body.plain)

CRE may also be used in a CO position e.g.

$(CONDIF.from.user)$(CONDYES.REGMATCH_…)

7.6.1.1 The PLAIN output statement
This statement outputs URI encoded plain text strings.

E.g.

$(CONDIF.from.user)$(CONDYES.PLAIN.%3csip%3a1234%40company.com%3e)
$(CONDIF.from.user)$(CONDNO.PLAIN.%3csip%3aABCD%40company.com%3e)

7.6.1.1 The header output statement
This statement outputs the named URI or header from ingress.

E.g.

$(CONDIF.from.user)$(CONDYES.from)

7.6.1.1 The header.part output statement
This statement outputs the named URI or header part from ingress.

E.g.

$(CONDIF.from.user)$(CONDYES.from.user)

How To Guide: Generic Header Manipulation & Regular Expressions Page 48 of 60

7.7 Conditional Header Output (CHO) examples

7.7.1 Simple

?from=$(CONDIF.diversion.user)$(CONDYES.PLAIN.%3csip%3a1234%40comp

any.com%3e)$(CONDNO.PLAIN.%3csip%3aABCD%40company.com%3e)

Explanation: If there is a user portion of a Diversion: header, then the From: header produced

will be <sip:1234@company.com>, otherwise it will be <sip:ABCD@company.com>

Resulting in either:

(CONDYES) ...
Diversion: joe@domain

From: <sip:1234@company.com>

or

(CONDNO) ...
From: <sip:ABCD@company.com>

Note: headers of the format <tel:…> are accessed not with header.user but with
header.telnum

7.7.2 More Complex Example

?from=$(CONDIF.diversion.user)$(CONDYES.PLAIN.%3csip%3a)$(CONDYES.

REGMATCH_^\+([0-9]+)$_REGMOD_+$1_REGELSE_^00([0-9]+)$_REGMOD_+$1_R

EGELSE_^0([0-9]+)$_REGMOD_+46$1_REGELSE_(.*)_REGMOD_$1_REGEND.from

.user)$(CONDYES.PLAIN.%40company.com%3e)$(CONDNO.PLAIN.%3csip%3aAB

CDEFGH%40company.com%3e)

This CHO does the following:

1. Where the ingress message contains a Diversion: header, then the username portion in the From:
header (appended with “company.com”) replaces the From: header of the egress message, after
applying Sweden E164 Number Normalization example.

2. Where the ingress message from the PBX does not contain a Diversion: header, no header
manipulation is performed.

Resulting in either:

(CONDYES) ...
Diversion: ext67@company.com

From: <sip:+46812345678@company.com>

or an unmodified from header:

(CONDNO) ...
From: <sip:0812345678@company.com>

 Page 49 of 60

This Request at ingress… …With this GHM… …Becomes this request at egress
INVITE sip:zyx@ingate.com SIP/2.0

Session-Expires: 14400

Via: SIP/2.0/UDP

192.0.2.2:5060;branch=z9hG4bK4cc

To: <sip:zyx@ingate.com>

From: <sip:alpha@ingate.com>;tag=99

Call-ID: 21@sipgt-2d

CSeq: 3 INVITE

Contact: <sip:E4F0pr@192.0.2.2>

Supported: timer, replaces, path, histinfo

Allow: ACK, CANCEL, INVITE, BYE

Max-Forwards: 15

Content-Type: application/sdp

Content-Length: ...

?from=$(CONDIF.diversion.user)$(C

ONDYES.PLAIN.%3csip%3a1234%40comp

any.com%3e)$(CONDNO.PLAIN.%3csip%

3aABCD%40company.com%3e)

INVITE sip:zyx@ingate.com SIP/2.0

Session-Expires: 14400

Via: SIP/2.0/UDP

192.0.2.2:5060;branch=z9hG4bK4cc72853

To: <sip:zyx@ingate.com>

From: <sip:ABCD@company.com>;tag=123

Call-ID: 21@sipgt-2d

CSeq: 3 INVITE

Contact: <sip:E4F0pr@192.0.2.2>

Supported: timer, replaces, path, histinfo

Allow: ACK, CANCEL, INVITE, BYE

Max-Forwards: 15

Content-Type: application/sdp

Content-Length: ...

INVITE sip:zyx@ingate.com SIP/2.0

Session-Expires: 14400

Via: SIP/2.0/UDP

192.0.2.2:5060;branch=z9hG4bK4cc

Diversion:

<sip:gohere@xcorp.xyz;reason=no-answer>

To: <sip:zyx@ingate.com>

From: <sip:alpha@ingate.com>;tag=55

Call-ID: 21@sipgt-2d

CSeq: 3 INVITE

Contact: <sip:E4F0pr@192.0.2.2>

Supported: timer, replaces, path, histinfo

Allow: ACK, CANCEL, INVITE, BYE

Max-Forwards: 15

Content-Type: application/sdp

Content-Length: ...

?from=$(CONDIF.diversion.user)$(C

ONDYES.PLAIN.%3csip%3a1234%40comp

any.com%3e)$(CONDNO.PLAIN.%3csip%

3aABCD%40company.com%3e)

INVITE sip:zyx@ingate.com SIP/2.0

Session-Expires: 14400

Via: SIP/2.0/UDP

192.0.2.2:5060;branch=z9hG4bK4cc

Diversion:

<sip:gohere@xcorp.xyz;reason=no-answer>

To: <sip:zyx@ingate.com>

From:<sip:1234@company.com>;tag=555665

Call-ID: 21@sipgt-2d

CSeq: 3 INVITE

Contact: <sip:E4F0pr@192.0.2.2>

Supported: timer, replaces, path, histinfo

Allow: ACK, CANCEL, INVITE, BYE

Max-Forwards: 15

Content-Type: application/sdp

Content-Length: ...

A note about parameters: we have not included any parameters in our expression. The b2bua will add its own special ;tag parameter separately

to the new From header. Any ;tag parameter you copy from the source through the use of a $(from.params) expression will be updated

separately by the B2BUA, but other parameters will remain unchanged. If you want to include any parameters found after <sip:…> in your

result, add $(from.params) to your expression:

?from=$(CONDIF.diversion.user)$(CONDYES.PLAIN.%3csip%3a12345678%40company.com%3e)$(CONDNO.PLAIN.

%3csip%3aABCDEFGH%40company.com%3e)$(from.params)

 Page 50 of 60

7.7.3 More Complex Example - History-Info

Where forwarding information is transported via a History-Info: header, then the following should be

used:

?from=$(CONDIF.history-info[-1].user)$(CONDYES.PLAIN.%3csip%3a)

$(CONDYES.REGMATCH_^\+([0-9]+)$_REGMOD_+$1_REGELSE_^00([0-9]+)$_RE

GMOD_+$1_REGELSE_^0([0-9]+)$_REGMOD_+46$1_REGELSE_(.*)_REGMOD_$1_R

EGEND.from.user)$(CONDYES.PLAIN.%40company.com%3e)

Note: that history-info[-1] refers to the last history-info header present in the SIP message from the

PBX.

Resulting in either:

(CONDYES) ...

History-Info: qwerty

From: <sip:+46812345678@company.com>

or an unmodified from header:

(CONDNO) ...
From: <sip:0812345678@company.com>

7.7.4 More Complex Example – Conditional From Header, based on To callee

A company has an old PRI. Outbound calls are now made over the new SIP trunk. On standard calls,

they want to send the main number of the PRI out over the SIP trunks. They need to send the real

caller ID of the SIP trunks on emergency 911 calls, however.

The old PRI number is 555-101-2001.

Their new SIP trunk number is 555-777-8888.

So, if the call is to 911 i.e.

the user portion of the To header is 911,

the resulting From number is 5557778888,

if the call is not to 911 (i.e. to anything other than 911),

the resulting From number is 5551012001.

A suitable expression would be:

?from=$(CONDIF.REGMATCH_^911$_REGEND.to.user)$(CONDYES.PLAIN.%3csi

p%3a5557778888%40192.0.2.2%3e)$(CONDNO.PLAIN.%3csip%3a5551012001%4

0192.0.2.2%3e)

Resulting in either (911 is called):

(CONDYES) ...

From: <sip:5556668888@192.0.2.2>

Or (any other number is called):

(CONDNO) ...

From: <sip:5551012001@192.0.2.2>

How To Guide: Generic Header Manipulation & Regular Expressions Page 51 of 60

7.8 URI Parameter Chaining

You can also manipulate multiple headers this way, by chaining the header manipulations in the

usual way with the & character. The example below is like the previous History-Info example

above, plus it sets the field P-Preferred-Identity:

?from=$(CONDIF.diversion.user)$(CONDYES.PLAIN.%3csip%3a)$(CONDYES.

REGMATCH_^\+([0-9]+)$_REGMOD_+$1_REGELSE_^00([0-9]+)$_REGMOD_+$1_R

EGELSE_^0([0-9]+)$_REGMOD_+46$1_REGELSE_(.*)_REGMOD_$1_REGEND.from

.user)$(CONDYES.PLAIN.%40company.com%3e)&P-Preferred-Identity=%3cs

ip%3aanother_id%40shop.com%3e

Resulting in either:

(CONDYES) ...

 Diversion: mike@domain

From: <sip:+46812345678@company.com>

P-Preferred-Identity: <sip:another_id@shop.com>

or an unmodified from header:

(CONDNO) ...
From: <sip:0812345678@company.com>

P-Preferred-Identity: <sip:another_id@shop.com>

Note: If you want to add a header (which did not already exist in the message) only under certain

circumstances e.g.: Replace a possibly existing Referred-By: header with a Diversion: header

?Diversion=$(CONDIF.Referred-By.user)$(CONDNO.ABORT)$(CONDYES.PLAI

N.%3csip%3a)$(CONDYES.Referred-By.user)$(CONDYES.PLAIN.%40)$(CONDY

ES.Referred-By.host)$(CONDYES.PLAIN.%3e)&Referred-By=__remove

If no Referred-By header is present, then without the $(CONDNO.ABORT) the following evaluation

results:
?Diversion=

&Referred-By=__remove

which results in an empty diversion header in the resulting message. But with the

$(CONDNO.ABORT), the resulting header manipulation string

becomes ?Diversion=$(ABORT)&Referred-By=__remove and since header

manipulations with unresolved variables will be skipped, no empty diversion header will be added. In

effect becoming just:

?Referred-By=__remove

7.8.1 Illegal Chaining

The following example of chaining is illegal, and will not work:

?from=$(CONDIF.diversion.user)$(CONDYES.PLAIN.%3csip%3a&P-Preferre

d-Identity=%3csip%3aanother_id%40shop.com%3e)

How To Guide: Generic Header Manipulation & Regular Expressions Page 52 of 60

For the above example to compile, it must be corrected – note the closing parenthesis:

?from=$(CONDIF.diversion.user)$(CONDYES.PLAIN.%3csip%3a)&P-Preferr

ed-Identity=%3csip%3aanother_id%40shop.com%3e

Summary: Parameter chaining only works outside of the regular expression $() context, and cannot

be chained conditionally.

7.9 Keyword / Grammar and Syntax Summary for CHO and CRE

7.9.1 Tests

$(

[CONDIF(.REGMATCH…) |

CONDIFNOT |

CONDANDIF |

CONDANDIFNOT |

CONDORIF |

CONDORIFNOT].Header.Portion

)

7.9.2 Results

$(

CONDYES

.PLAIN.Text |

.Header.Portion |

.ABORT

| CONDNO

.PLAIN.Text |

.Header.Portion |

.ABORT

)

7.9.3 RegExp

$(

REGMATCH_

REGMOD

REGELSE

REGMOD

…

_REGEND.Header.Portion

)

Note: Statement keywords and expressions are evaluated from left to right, i.e. forwards in their

construction.

How To Guide: Generic Header Manipulation & Regular Expressions Page 53 of 60

8 Generic Header Manipulation (GHM)

The SIP header:

Diversion: <sip:7202839130@192.168.1.1>

Can be produced by the GHM:

 ?Diversion=%3csip%3a7202839130%40192.168.1.1%3e

GHM for egress Requests (INVITE, REGISTER, …) are invoked by ?

GHM for egress Responses (200 OK, 180 Ringing, …) are invoked by ?!

Remove headers at egress by assigning the reserved value __remove (two underscores).

GHM are generally:

sip:URI?header=value

GHM to do multiple headers at once:

sip:URI?header=valueX&header2=valueY

And value can be composed of CHO, CRE, HAV, etc i.e.:

 sip:user@host?header=CHO&header2=CRE

Characters disallowed or reserved in RFC 3261 must be escaped with a %HEX notation where HEX is

a 2-digit hexadecimal number representing the escaped character (i.e. URI-Encoded String).

The table below lists often used characters, and their corresponding URI encoded HEX value:

Character HEX Value
@ %40

: %3a

; %3b

, %2c

= %3d

< %3c

> %3e

Spaces + or %20

Note: < and > are required in the Header Value under some conditions. Consider it best practice to

always use them. Refer to RFC 3261 section 20.10.

A fully constructed expression used in a Forward To might be:

https://tools.ietf.org/html/rfc3261#section-25.1
https://tools.ietf.org/html/rfc3261#section-20.10

How To Guide: Generic Header Manipulation & Regular Expressions Page 54 of 60

sip:request-URI;tag1;tag2?header=value&header2=value2!header=value

Request-URI GHM separator

& header name

%HEX URI-Encoded header value

sip:$1@192.168.1.1 ?Diversion= %3csip%3a72839130%40192.168.1.1%3e

8.1 GHM for Requests(?...&…)

8.1.1 Adding or Replacing Headers

GHMs for Request methods (INVITE, REGISTER, OPTIONS, …) are denoted by the character ?

For GHM:

-If a specified URI exists at ingress, the header at egress is replaced.

-If a specified URI is absent at ingress, the header at egress is added.

?header=%3cUri-encoded_string%3e&header2=%3cUri-encoded_string%3e

8.1.2 Examples: GHM for Requests(?): Adding or Replacing Headers

Header GHM strings which produce it

P-Asserted

Identity

sip:$1@192.168.1.1?P-Asserted-Identity=%3csip%3a

7202839130%40192.168.1.1%3e

 sip:$1@example.com?P-Asserted_Identity=%3csip%3a

7202839130%40192.168.1.1%3e

Diversion sip:$1@192.168.1.1?Diversion=%3csip%3a7202839130

%40192.168.1.1%3e

Privacy sip:$1@example.com?Privacy=<url-encoded_string>

Multiple

headers

sip:$1@192.168.1.1?P-Asserted-Identity=<url-enco

ded>&Diversion=<url-encoded_string>

with tags sip:$1@192.168.1.1;b2bua;from="Anonymous@10.182.

0.178"?P-Asserted-Identity=<url-encoded_string>&

Privacy=id

Replace

the Allow

header

(Ingate

<=5.0.6)

?Allow=ACK%2cINVITE%2cBYE%2cCANCEL%2cOPTIONS

Note: Replace %3cUri-encoded_string%3e with a valid URI-encoded header value.

How To Guide: Generic Header Manipulation & Regular Expressions Page 55 of 60

8.1.3 Removing headers

?header=__remove&otherheader=__remove

Headers specified for removal which exist at ingress, are removed at egress.

8.1.4 Examples: Removing a header

Removing Privacy Header

sip:$1@192.168.1.1?Privacy=__remove

sip:$1@example.com?P-Asserted-Identity=__remove

sip:$(ruri.user)@$(ruri.host)?Diversion=__remove

8.1.5 Indices, Indexes, [?]; limiting the scope of operation

?History-Info=__remove removes all History-

Info headers

?History-Info[2]=__remove removes only the second

History-Info header

?History_Info=something sets all History-Info

headers to the same value
something

?History_Info[2]=something sets only the 2nd one to

something, the 1st and 3rd

remain unchanged

?History_Info=__remove&History_info=something removes all History-

Info headers and only one

new History-Info

header with value

something is created.

See also Indices, indexes, [?]

8.2 GHM for Responses(?!...&!...)

8.2.1 Adding or Replacing Headers

GHM for egress Responses (200 OK, 180 Ringing, …) are invoked by ?!

?!header=%3cUri-encoded_string%3e&!header2=%3cUri-encoded_string%3e

How To Guide: Generic Header Manipulation & Regular Expressions Page 56 of 60

Example solution to Avaya display problem using P-Asserted-Identity:

sip:$1@192.168.1.1?!P-Asserted-Identity=$(to.dnameuri) Add P-Asserted

Identity Header

to all egress

responses

This adds P-Asserted-Identity to the response, with the display name and URI taken from

the To header at ingress.

8.2.2 Removing headers

?!header=__remove&!otherheader=__remove

8.3 GHM for Requests (?...&…) and Responses(?!...&!) combined in one expression

8.3.1 Adding or Replacing Headers

?!response-hdr01=%3c…%3e&!response-hdr02=%3c…%3e&req-hdr01

=%3c…%3e&req-hdr02=%3c…%3e

8.3.1 Removing headers

?req-header=__remove&!response-header=__remove

8.4 Multiple Occurrences of the same Header

Header fields are indexed using angle brackets [x] so that one can refer to the n:th occurrence of any

header.

8.4.1 Breakout Example

The following is just one long line:

sip:$0@example.com?User-Agent=$(hdr.user-agent)

&Contact=sip%3afoo%40$(ip.eth4)%3buser%3dphone

&Organization=mycompany&Privacy=__remove

&Diversion[1]=sip%3a$(diversion[1].user)%401.1.1.1

Explanation of each Reg Expr component:

Component Explanation
sip:$0@example.com This is the Request URI, $1 expresses the first

variable captured in, e.g. from Matching Request

URI field in the SIP Traffic – Dial Plan page.

How To Guide: Generic Header Manipulation & Regular Expressions Page 57 of 60

?User-Agent=$(hdr.user-agent) User-Agent header is supplied with the value

taken from the ingress User-Agent header,

where it exists. In B2BUA mode, the Ingate

replaces the User-Agent header with its own

string.
&Contact=sip%3afoo%40$(ip.eth4)

%3buser%3dphone

The Contact Header is replaced with the IP

address of eth4
&Organization=mycompany The header Organization is added

&Privacy=__remove The Privacy header is removed.

&Diversion[1]=sip%3a$(diversion

[1].user)%401.1.1.1

The first Diversion header found, a new host

portion is entered as 1.1.1.1.

8.5 Header Access Variables

Header Access Variables can be used in GHM as for Regular Expressions. The pre-defined variables

can be used in GHM expressions. HAV provide read-only values of headers, or portions thereof

found at ingress, in the result. See the chapter Header Access Variables for a list of available

variables.

8.5.1 Header Access Variable Examples

Expression Explanation
sip:$0@example.com?Contact=sip%3af

oo%40$(ip.eth3)%3buser%3dphone
Modify Contact header with eth3 IP address

sip:$0@192.168.1.2?from=%3Csip%3a%

2B$(from.user)%40172.16.0.1%3e

Add special character + to the from header

sip:$0?From=%3Csip%3a$(REGMATCH_^0

01([0-9]{10})$_REGMOD_+1$1_REGELSE

_^1([0-9]{10})$_REGMOD_+1$1_REGELS

E_([0-9]{10})$_REGMOD_+1$1_REGEND.

from.user)%40$(from.host)$(CONDIF.

from.uriparams)$(CONDYES.from.urip

arams)%3e$(from.params)

Reduce all variants of the from header

prefix 01, 1, or +1 to +1, pass any other URI

parameters

sip:$0?From=%3Csip%3a$(REGMATCH_^0

01([0-9]{10})$_REGMOD_+1$1_REGELSE

_^1([0-9]{10})$_REGMOD_+1$1_REGELS

E_([0-9]{10})$_REGMOD_+1$1_REGEND.

from.user)%40$(from.host)$([from.u

riparams])%3e$(from.params)

Reduce all variants of the from header

prefix 01, 1, or +1 to +1, pass any other URI

parameters (alternative)

sip:$1@192.168.1.1?From=$(from.uri

)

Strip the Display name portion out of the

from header

+32$1?Diversion=+$(Diversion.telnu

m)
prefix + and re-write an ingress tel: format

Diversion header to simply +…

How To Guide: Generic Header Manipulation & Regular Expressions Page 58 of 60

How To Guide: Generic Header Manipulation & Regular Expressions Page 59 of 60

9 Supplementary examples from real-world support cases

How To Guide: Generic Header Manipulation & Regular Expressions Page 60 of 60

-Document ends-

	1 Introduction
	1.1 Example
	1.2 How?
	1.3 Why GHM?
	1.4 Where do I use GHM?
	1.5 What can I do with GHM?

	2 Where to configure GHM
	2.1 SIP Traffic – Dial Plan
	2.2 Regexp match – Matching From Header
	2.3 Regexp match – Matching R-URI
	2.4 Regexp substitution and GHM – Forward To
	2.5 SIP Traffic – Routing
	2.6 SIP Trunk – Trunk 1-n
	2.7 Incoming messages
	2.8 Outgoing messages

	3 Regular Expressions – matching your input
	3.1 Introduction
	3.2 Explanation
	3.3 Standard regular-expression notation
	3.4 Escape special characters
	3.5 Routing calls using the Dial Plan and the SIP trunk Page
	3.6 Example Regular Expressions in the Matching From Header
	3.7 Regular Expressions in the Matching Request URI
	3.7.1 Examples for a trunk
	3.7.2 Special Expressions for captures made in Request-URI

	3.8 Regular Expressions in the Forward To
	3.9 Examples of Basic Regular Expressions
	3.10 Additional information

	4 Special Tags in the Ingate Firmware
	4.1 Rewrite From header on egress
	4.2 183 to 180 conversion
	4.3 Do not REGISTER to trunk server(s)
	4.4 Do not automatically monitor trunk server(s) with SIP OPTIONS
	4.5 Force B2BUA on
	4.6 B2BUA with media via the main dial plan
	4.7 Explicitly state transport
	4.8 Specifying Escape Characters (dial string) for e.g. Telia SIP trunk
	4.9 Explicitly handle only specific METHODS
	4.10 Force a specific response, e.g. 503, 5xx, 6xx
	4.11 Support q-value in Trunk User Name
	4.12 Support parallel forward in the dial-plan
	4.13 Forward REFER through the B2BUA

	5 Header Access Variables
	5.1 Headers
	5.2 Body Access Variable
	5.3 The difference between $(x.user) and $([x.user])
	5.4 Port and Password
	5.5 Indices, indexes, [?]
	5.5.1 Limit the scope of operation
	5.5.2 Example INVITE - URIs and headers rewritten as variable (HAV) names

	5.6 Example equivalences of a From header (built using HAV)
	5.7 Examples

	6 Call Count Variables
	6.1 Call Counters
	6.2 Call Count Logic

	7 Conditionals
	7.1 Conditional Regular Expressions (CRE)
	7.1.1 Available statement keywords
	7.1.1.1 The REGMATCH action statement
	7.1.1.2 The REGMOD action statement
	7.1.1.3 The REGELSE action statement
	7.1.1.4 The REGEND action statement

	7.1.2 Worked Examples
	7.1.2.1 Sweden E164 Number Normalization
	7.1.2.2 USA E164 Number Normalization
	7.1.2.3 Generic Normalization into a + prefixed 8-12 digit phone number string
	7.1.2.4 Forward To based on body content

	7.2 Conditional Header Output (CHO) and Conditional Body Output (CBO)
	7.3 Conditional Test (CT)
	7.3.1 Available CT statement keywords
	7.3.1.1 The CONDIF test statement
	7.3.1.2 The CONDIFNOT test statement
	7.3.1.3 The CONDANDIF test statement
	7.3.1.4 The CONDANDIFNOT test statement
	7.3.1.5 The CONDORIF test statement
	7.3.1.6 The CONDORIFNOT test statement

	7.4 Conditional Results (CR)
	7.4.1 Available CR keywords
	7.4.1.1 The CONDYES result statement
	7.4.1.2 The CONDNO result statement

	7.5 Conditional Actions (CA)
	7.5.1 Available CA keywords
	7.5.1.1 The ABORT action statement

	7.6 Conditional Output (CO)
	7.6.1 Available CO keywords
	7.6.1.1 The PLAIN output statement
	7.6.1.1 The header output statement
	7.6.1.1 The header.part output statement

	7.7 Conditional Header Output (CHO) examples
	7.7.1 Simple
	7.7.2 More Complex Example
	7.7.3 More Complex Example - History-Info
	7.7.4 More Complex Example – Conditional From Header, based on To callee

	7.8 URI Parameter Chaining
	7.8.1 Illegal Chaining

	7.9 Keyword / Grammar and Syntax Summary for CHO and CRE
	7.9.1 Tests
	7.9.2 Results
	7.9.3 RegExp

	8 Generic Header Manipulation (GHM)
	8.1 GHM for Requests(?...&…)
	8.1.1 Adding or Replacing Headers
	8.1.2 Examples: GHM for Requests(?): Adding or Replacing Headers
	8.1.3 Removing headers
	8.1.4 Examples: Removing a header
	8.1.5 Indices, Indexes, [?]; limiting the scope of operation

	8.2 GHM for Responses(?!...&!...)
	8.2.1 Adding or Replacing Headers
	8.2.2 Removing headers

	8.3 GHM for Requests (?...&…) and Responses(?!...&!) combined in one expression
	8.3.1 Adding or Replacing Headers
	8.3.1 Removing headers

	8.4 Multiple Occurrences of the same Header
	8.4.1 Breakout Example

	8.5 Header Access Variables
	8.5.1 Header Access Variable Examples

	9 Supplementary examples from real-world support cases

